C2 - Chapter 4-Coordinate geometry in the (x, y) plane - Extra Practice

1. a) Radius $=\sqrt{(4-1)^{2}+[2-(-2)]^{2}}=5 \Rightarrow(x-1)^{2}+(y+2)^{2}=5^{2}$
b) Radius $=\sqrt{(-5-0)^{2}+(7-5)^{2}}=\sqrt{29} \Rightarrow(x+5)^{2}+(y-7)^{2}=29$

2

a) $m_{P Q}=\frac{10-1}{3-0}=\frac{9}{3}=3$
$m_{Q R}=\frac{9-10}{6-3}=-\frac{1}{3}$
$m_{P Q} \cdot m_{Q R}=-1$
$P \hat{Q R}$ is a right-angle $A S$ REQUIRED
b) $P R$ is a diameter
\Rightarrow Circle centre is the midpoint of PR $\left(\frac{0+6}{2}, \frac{1+9}{2}\right)=(3,5)$
Radius $=\sqrt{(3-0)^{2}+(5-1)^{2}}=5$

$$
\begin{aligned}
& (x-3)^{2}+(y-5)^{2}=25 \\
& x^{2}-6 x+9+y^{2}-10 y+25=25 \\
& x^{2}+y^{2}-6 x-10 y+9=0 \text { AS REQUIRED }
\end{aligned}
$$

3. a) $x^{2}+y^{2}=64 \quad \begin{aligned} & \text { Centre }(0,0) \text { Radius }=8 \\ & \text { Distance }=\sqrt{(9-0)^{2}+(0-0)^{2}}=9>8 \quad \therefore \text { Outside }\end{aligned}$
b) $x^{2}+y^{2}-2 x-6 y-26=0$
$x^{2}-2 x+y^{2}-6 y-26=0$
$(x-1)^{2}-1+(y-3)^{2}-9-26=0$

$$
\begin{aligned}
(x-1)^{2}+(y-3)^{2}=36 \Rightarrow & \text { Centre }(1,3) \text { Radius }=6 \\
& \text { Distance }=\sqrt{(4-1)^{2}+(7-3)^{2}}=5<6 \therefore \text { Inside }
\end{aligned}
$$

c) $x^{2}+y^{2}+10 x-4 y=140$

$$
x^{2}+10 x+y^{2}-4 y=140
$$

$$
(x+5)^{2}-25+(y-2)^{2}-4=140
$$

$(x+5)^{2}+(y-2)^{2}=169 \Rightarrow \quad \begin{aligned} & \text { Centre }(-5,2) \text { Radius }=13 \\ & \text { Distance }=\sqrt{[7-(-5)]^{2}+(-3-2)^{2}}=13=13 \quad \therefore \text { Lies on the circle }\end{aligned}$
d) $x^{2}+y^{2}+2 x+8 y-13=0$

$$
x^{2}+2 x+y^{2}+8 y-13=0
$$

$$
\begin{aligned}
&(x+1)^{2}-1+(y+4)^{2}-16-13=0 \\
&(x+1)^{2}+(y+4)^{2}=30 \Rightarrow \text { Centre }(-1,-4) \quad \text { Radius }=\sqrt{30} \\
& \text { Distance }=\sqrt{[-4-(-1)]^{2}+[1-(-4)]^{2}}=\sqrt{34}>\sqrt{30} \quad \therefore \text { Outside }
\end{aligned}
$$

4. a) $x^{2}+y^{2}-6 x+4 y-12=0$
$x^{2}-6 x+y^{2}+4 y-12=0$
$(x-3)^{2}-9+(y+2)^{2}-4-12=0$

$$
(x-3)^{2}+(y+2)^{2}=25
$$

$$
A(3,-2)
$$

b) Radius $=\sqrt{25}=5$ AS REQUIRED
c) Length of $P Q=10 \Rightarrow P Q$ is a diameter

Using Pythagoras' theorem $10^{2}=3^{2}+(Q R)^{2}$ $Q R=\sqrt{91}=9.5$

5. a) $x^{2}+y^{2}-10 x+6 y-15=0$

$$
x^{2}-10 x+y^{2}+6 y-15=0
$$

$$
(x-5)^{2}-25+(y+3)^{2}-9-15=0
$$

$$
(x-5)^{2}+(y+3)^{2}=49
$$

$$
\text { Centre }(5,-3)
$$

b) \quad Radius $=\sqrt{49}=7$
6. a) $a=4 \quad b=5$ (You can see this if you draw the radius to the point where the circle touches the x-axis)
b) $(x-4)^{2}+(y-5)^{2}=25$
c)
 Distance from centre to P $=\sqrt{(8-4)^{2}+(17-5)^{2}}=\sqrt{160}$ Using Pythagoras' theorem $\begin{aligned}(\sqrt{160})^{2} & =5^{2}+(P T)^{2} \\ P T & =\sqrt{135}=11.6\end{aligned}$
7. a) $(x-3)^{2}+(y-4)^{2}=(3 \sqrt{2})^{2}$
b) Substitute $y=x+3 \Rightarrow(x-3)^{2}+(x+3-4)^{2}=18$

$$
(x-3)^{2}+(x-1)^{2}=18
$$

$$
x^{2}-6 x+9+x^{2}-2 x+1=18
$$

$$
2 x^{2}-8 x-8=0
$$

$$
x^{2}-4 x-4=0
$$

$$
x=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(-4)}}{2}
$$

$$
\begin{aligned}
& x=2+2 \sqrt{2} \\
& y=5+2 \sqrt{2}
\end{aligned} \quad \stackrel{O R}{ } \quad \begin{aligned}
& x=2-2 \sqrt{2} \\
& y=5-2 \sqrt{2}
\end{aligned}
$$

$$
(2+2 \sqrt{2}, 5+2 \sqrt{2}) \quad(2-2 \sqrt{2}, 5-2 \sqrt{2})
$$

c) Distance $=\sqrt{[2+2 \sqrt{2}-(2-2 \sqrt{2})]^{2}+[5+2 \sqrt{2}-(5-2 \sqrt{2})]^{2}}=8$
8.
9. $\begin{aligned} & x^{2}+y^{2}-8 x-8 y+27=0 \\ & \text { Substitute } y=2 x+1 \Rightarrow\end{aligned}$

$$
\begin{aligned}
& x+(2 x+1)-8 x-8(2 x+1)+27=0 \\
& x^{2}+4 x^{2}+4 x+1-8 x-16 x-8+27=0 \\
& 5 x^{2}-20 x+20=0 \\
& x^{2}-4 x+4=0 \\
& (x-2)^{2}=0 \\
& x=2 \\
& \text { Repeated root, therefore } y=2 x+1 \text { is a tangent to the circle } \\
& \text { Point of contact }(2,5)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}+6 x+2 y=27 \\
& \text { Substitute } y=1-x \Rightarrow x^{2}+(1-x)^{2}+6 x+2(1-x)=27 \\
& x^{2}+1-2 x+x^{2}+6 x+2-2 x=27 \\
& 2 x^{2}+2 x-24=0 \\
& x^{2}+x-12=0 \\
& (x+4)(x-3)=0 \\
& x=-4 \quad O R \quad x=3 \\
& y=5 \quad y=-2 \\
& A(-4,5) \quad B(3,-2) \\
& A B=\sqrt{[3-(-4)]^{2}+(-2-5)^{2}}=\sqrt{98}=7 \sqrt{2}
\end{aligned}
$$

$$
\begin{array}{r}
\begin{array}{r}
x^{2}+y^{2}-8 x-16 y+72=0 \\
\text { Substitute } y=m x \Rightarrow
\end{array} \\
\text { HARD! } \begin{array}{r}
x^{2}+(m x)^{2}-8 x-16(m x)+72=0 \\
x^{2}+m^{2} x^{2}-8 x-16 m x+72=0 \\
\left(1+m^{2}\right) x^{2}+(-8-16 m) x+72=0
\end{array} \\
\text { Tangent } \Rightarrow \begin{array}{r}
\text { Repeated root } \Rightarrow b^{2}-4 a c=0 \\
\Rightarrow(-8-16 m)^{2}-4\left(1+m^{2}\right)(72)=0 \\
64+256 m+256 m^{2}-288-288 m^{2}=0 \\
-32 m^{2}+256 m-224=0 \\
32 m^{2}-256 m+224=0 \\
m^{2}-8 m+7=0 \\
(m-1)(m-7)=0 \\
m=1 \text { oR } m=7
\end{array}
\end{array}
$$

11. a) Centre is the midpoint of $A B \Rightarrow\left(\frac{-5+3}{2}, \frac{6+8}{2}\right)=(-1,7)$
b) Radius $=\sqrt{(8-7)^{2}+[3-(-1)]^{2}}=\sqrt{17} \quad \Rightarrow \quad(x+1)^{2}+(y-7)^{2}=17$
c) $m_{\text {RADIUS AT A }}=\frac{6-7}{-5-(-1)}=\frac{-1}{-4}=\frac{1}{4} \Rightarrow m_{\text {TANGENT }}=-4$

$$
\therefore \quad y-6=-4(x+5)
$$

12.

a) $\left(\frac{-4+(-2)}{2}, \frac{9+(-5)}{2}\right)=(-3,2)$
b) Radius $=\sqrt{(9-2)^{2}+[-4-(-3)]^{2}}=\sqrt{50} \Rightarrow(x+3)^{2}+(y-2)^{2}=50$
c) Substitute $x=2, y=7 \Rightarrow(2+3)^{2}+(7-2)^{2}=5^{2}+5^{2}$
$=25+25=50 \quad \therefore R(2,7)$ lies on C AS REQUIRED
d) $P \hat{R} Q=90^{\circ}$ Angle in a semicircle
13. a) $m_{P R}=\frac{2-(-10)}{-10-(-2)}=\frac{12}{-8}=-3 / 2 \quad m_{P Q}=\frac{14-2}{8-(-10)}=\frac{12}{18}=2 / 3$

$$
m_{P R} \cdot m_{P Q}=-1 \Rightarrow P R \text { is perpendicular to } P Q \text { AS REQUIRED }
$$

b) $R Q$ is a diameter \Rightarrow Centre $\left(\frac{8+(-2)}{2}, \frac{14+(-10)}{2}\right)=(3,2)$

$$
\begin{aligned}
& \text { Radius }=\sqrt{(14-2)^{2}+(8-3)^{2}}=13 \\
& \therefore \quad(x-3)^{2}+(y-2)^{2}=13^{2} \\
& x^{2}-6 x+9+y^{2}-4 y+4=169 \\
& \quad x^{2}+y^{2}-6 x-4 y-156=0 \text { AS REQUIRED }
\end{aligned}
$$

