THE GC SCHOOL OF CAREERS

DEPARTMENT OF MATHEMATICS

EXTRA PRACTICE

CORE MATHEMATICS 2

THE BINOMIAL EXPANSION

EXERCISES

- 1. Find the complete binomial expansion of $(1-2x)^4$ in ascending powers of x, giving each coefficient as simply as possible.
- 2. Find the first 4 terms of the expansion, in ascending powers of x, of $(2+3x)^9$, giving each coefficient as simply as possible.
- 3. Find the first 4 terms of the expansion, in ascending powers of x, of $(2 + x)(1 x)^5$, giving each coefficient as simply as possible.
- 4. In the expansion of $(2 + px)^7$, the coefficient of x^2 is 6048. Work out the possible values of p.
- 5. In the expansion of $(1 + px)^5$, where $p \neq 0$, the coefficient of x^3 is twice the coefficient of x^2 . Find the possible values of p.
- 6. In the expansion of $(1 + px)^{1^2}$, the coefficient of x is 2q, and the coefficient of x^2 is 55q. Given that $p \neq 0$, find the values of p and q.

7. Given that
$$\binom{a}{5} = \frac{7!}{5!b!} = c$$
, write down the values of *a*, *b* and *c*.

8. a) Find the expansion of $(2-3x)^7$ in ascending powers of x up to the x^3 term, giving each coefficient as simply as possible.

Get in the right zone... MathsLearningZone.weebly.com

- b) Using your expansion from part a), find an approximation for 1.94⁷, stating clearly the substitution you have made.
- 9. a) Write down the first 4 terms in the binomial expansion, in ascending powers of x, of $(1 + ax)^n$, n > 2.

Given that in this expansion, the coefficient of x is 8 and the coefficient of x^2 is 30,

- **b**) calculate the value of *n* and the value of *a*,
- c) find the coefficient of x^3 .
- 10. The first three terms in the expansion, in ascending powers of x, of $(1 + px)^n$, are $1 - 18x + 36p^2x^2$.

Given than n is a positive integer, find the value of n and the value of p.

11. a) Write down the first four terms of the binomial expansion, in ascending powers of x, of $(1+3x)^n$, where n > 2.

Given that the coefficient of x^3 in this expansion is ten times the coefficient of x^2 ,

- **b**) find the value of *n*,
- c) find the coefficient of x^4 in the expansion.
- 12. The expansion of $(2 px)^6$ in ascending powers of x, as far as the term in x^2 , is

 $64 + Ax + 135x^2$

Given that p > 0, find the value of p and the value of A.

Get in the right zone...