THE GC SCHOOL OF CAREERS
 DEPARTMENT OF MATHEMATICS

EXTRA PRACTICE

CORE MATHEMATICS 2

THE BINOMIAL EXPANSION

EXERCISES

1. Find the complete binomial expansion of $(1-2 x)^{4}$ in ascending powers of x, giving each coefficient as simply as possible.
2. Find the first 4 terms of the expansion, in ascending powers of x, of $(2+3 x)^{9}$, giving each coefficient as simply as possible.
3. Find the first 4 terms of the expansion, in ascending powers of x, of $(2+x)(1-x)^{5}$, giving each coefficient as simply as possible.
4. In the expansion of $(2+p x)^{7}$, the coefficient of x^{2} is 6048 . Work out the possible values of p.
5. In the expansion of $(1+p x)^{5}$, where $p \neq 0$, the coefficient of x^{3} is twice the coefficient of x^{2}. Find the possible values of p.
6. In the expansion of $(1+p x)^{12}$, the coefficient of x is $2 q$, and the coefficient of x^{2} is $55 q$. Given that $p \neq 0$, find the values of p and q.
7. Given that $\binom{a}{5}=\frac{7!}{5!b!}=c$, write down the values of a, b and c.
8. a) Find the expansion of $(2-3 x)^{7}$ in ascending powers of x up to the x^{3} term, giving each coefficient as simply as possible.
b) Using your expansion from part a), find an approximation for 1.94^{7}, stating clearly the substitution you have made.
9. a) Write down the first 4 terms in the binomial expansion, in ascending powers of x, of $(1+a x)^{n}, n>2$.

Given that in this expansion, the coefficient of x is 8 and the coefficient of x^{2} is 30 ,
b) calculate the value of n and the value of a,
c) find the coefficient of x^{3}.
10. The first three terms in the expansion, in ascending powers of x, of $(1+p x)^{n}$, are $1-18 x+36 p^{2} x^{2}$.

Given than n is a positive integer, find the value of n and the value of p.
11. a) Write down the first four terms of the binomial expansion, in ascending powers of x, of $(1+3 x)^{n}$, where $n>2$.

Given that the coefficient of x^{3} in this expansion is ten times the coefficient of x^{2},
b) find the value of n,
c) find the coefficient of x^{4} in the expansion.
12. The expansion of $(2-p x)^{6}$ in ascending powers of x, as far as the term in x^{2}, is

$$
64+A x+135 x^{2}
$$

Given that $p>0$, find the value of p and the value of A.

