C2 - Chapter 7 - Geometric sequences and series - Extra practice - Solutions

1.
$$V_{14} = 5 = a$$
 r=1.2.
a) $U_{14} = 5 \times 1.2^{15} = 77$ (to the nearest integer)
b) $S_{30} = \frac{5(1-1.2^{30})}{1-1.2} = 5909$ (to the nearest integer)
c) $r=1.2 > 1$. It does not converge and has no sum to infinity
2 a) $V_{2} = 9 = av$ $U_{5} = 1.12.5 = av^{14}$
 $\frac{V_{15}}{V_{12}} = \frac{av^{14}}{av} = \frac{1.12.5}{9} \Rightarrow r^{3} = \frac{1}{8} \Rightarrow r = \frac{1}{2}$
b) $9 = a$ $V_{1} \Rightarrow a = 12$
c) $S_{30} = \frac{18}{1-V_{1}} = 36$
3 a) $U_{1} = a = 1200$ $S_{30} = 960$
 $940 = \frac{1200}{1-V_{1}} \Rightarrow 1-r = \frac{1200}{940} \Rightarrow 1-r = 1.25 \Rightarrow r = -\frac{1}{4}$ AS REQUIRED
b) $U_{1} = U_{10} = av^{6} - ar^{9} = 1200 \cdot (-\frac{1}{4})^{6} - 1200 \cdot (-\frac{1}{4})^{9} = 0.02.3$ (to $3.4p^{2}s$)
c) $S_{11} = \frac{1200(1-(-\frac{1}{4})^{11})}{1-(-\frac{1}{4})}$
d) $S_{11} = \frac{940}{1-(-\frac{1}{4})^{11}}$ if n is odd the $(-\frac{1}{4})^{11}$ AS REQUIRED
4. a) $U_{10+1} = \frac{1}{2}U_{1}$ $U_{1} = 1$ $U_{2} = \frac{1}{2}U_{2} = \frac{1}{2}U_{2}$
b) $\frac{5}{2}U_{1} = \frac{1}{1-3}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
b) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{2}U_{2}$
c) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{5}{2}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{1} = \frac{1}{1-1}U_{2}$
c) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{2}U_{2}$
c) $\frac{5}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{1}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{1}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{1}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2}$
c) $\frac{1}{2}U_{1} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-1}U_{2} = \frac{1}{1-$

Get in the right zone...

MathsLearningZone.com

5. a)
$$U_1 + U_2 = 10.8$$

 $= a + a_1$
 $= a + a_1$
 $= a_1(1+r)$
 $U_3 + U_4 = 43.2$
 $= a_1^{1+r}$
 $U_3 = a_1^{1}(1+r)$
 $U_3 = a_1(1+r)$
 $U_1 = \frac{24}{1-r}$
 $U_3 = \frac{24}{1-r}$
 $U_1 = \frac{24}{1-r}$
 $U_3 = \frac{24}{1-r}$
 $U_3 = \frac{1}{1-r}$
 $U_4 = \frac{1}{1-r}$
 $U_3 = \frac{1}{1-r}$
 $U_1 = \frac{1}{$

Get in the right zone...

MathsLearningZone.com

9(a)
$$U_1 = 4 + a$$
 $U_3 = U_3 = 20$
 $= av^2 av$
 $= av^2 (v-1)$
 $20 = 64v(v-1)$
 $5 = 16v(v-1)$
 $5 = 16v^2 - 16v$
 $16v^2 - 16v - 5 = 0$
 $(4v+1)(4v-5) = 0$ \Rightarrow $v_5 - 16$
For $v = -14$, $U_4 = 64 - (-1/4)^3 = -1$
For $v = 5/4$, $U_4 = 64 - (-1/4)^3 = -1$
For $v = 5/4$, $U_4 = 64 - (-1/4)^3 = -1$
For $v = 5/4$, $U_4 = 64 - (-1/4)^3 = -1$
For $v = 5/4$, $U_4 = 64 - (-1/4)^3 = -1$
 $18 = 4 - (-5^4)^3 = 125$
d) Series (anverges for $v = -1/4 \Rightarrow$ $S_m = \frac{64}{1-(-10)} = 51.2$
 $10 \cdot a$) $v = 1.5$ $U_3 = 18 = av^2$
 $18 = 4 - (-5^4)^3 = 166 + 25$
c) $8 \cdot 1.5^{-1}v = 166 + 25$
(4.-1) $\log 1.5 > \log \log 0.0$
 $(k-1) \log 1.5 > \log \log 0.0$
 $(k-1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log \log 0.0$
 $(k - 1) \log 1.5 > \log 0.0$
 $(k - 1) \log 1.5 = 3.04 + n.6w \ sub Scribers As $R = \log 1.8^{-1} - 1.5^{-1}$
 $(k - 1) \int 10^{-1} \log 1.0^{-1} - 1.5^{-1}$
 $(k - 1) \int 10^{-1} \log 1.0^{-1} - 1.5^{-1}$
 $(k - 1) \int 10^{-1} \log 1.0^{-1} - 1.5^{-1}$
 $(k - 1) \int 10^{-1} \log 1.0^{-1} - 1.5^{-1}$
 $(k - 1) \int 10^{-1} \log 1.0^{-1} - 1.5^{-1}$
 $(k - 1) \int 10^{-1} \log 1.0^{-1} - 1.5^{$$

Get in the right zone...

MathsLearningZone.com