CORE MATHEMATICS 2 CHAPTER 6 – RADIAN MEASURE AND ITS APPLICATIONS EXTRA PRACTICE

- **1.** Express in terms of $\sin \theta$, $\cos \theta$ or $\tan \theta$ where θ is an acute angle.
 - a. $\sin(540^\circ \theta)$
 - **b.** $\cos(-\theta)$
 - c. $\tan(-180^\circ + \theta)$
 - d. $\cos(\theta 720^\circ)$
- 2. (a) Determine, in degrees, the solutions of the equation
 - for which $0^{\circ} \le x \le 360^{\circ}$, giving your answers to the nearest tenth of a degree.
 - (b) Determine, in radians, the solutions of the equation

$$3\cos^2 y + 8\sin y = 0$$

 $\tan x = 5$

for which $0 \le y \le 2\pi$, giving your answers to 2 decimal places.

(11 marks)

- 3. Solve the equation $\sin(\theta 30^\circ) = 0.7$, giving your answers to the nearest 0.1° in the interval $0^\circ \le \theta \le 360^\circ$. (3 marks)
- 4. Prove that $(\cos x + \sin x)^2 + (\cos x \sin x)^2 = 2.$ (4 marks)
- 5. (i) Solve, for $0^\circ < x < 180^\circ$, the equation

$$\sin(2x+50^{\circ})=0.6$$
,

giving your answers to 1 decimal place.

(7)

6. Determine, in degrees, the solutions of each of the equations (a) $\sin 2x = \frac{1}{2}$, (b) $\sin^2 \left(\frac{3x}{2}\right) = \frac{1}{2}$, for which $-180^\circ \le x \le 180^\circ$. (9 marks)

Get in the right zone...

MathsLearningZone.com

7. (a) Sketch, for $0 \le x \le 360^\circ$, the graph of $y = \sin(x + 30^\circ)$.

(b) Write down the coordinates of the points at which the graph meets the axes.

(c) Solve, for $0 \le x < 360^\circ$, the equation

$$\sin(x+30^\circ) = -\frac{1}{2}$$
.

(3)

(2)

(3)

Given that θ is a reflex angle and that $\cos \theta = -\frac{1}{2}$, find the exact values of $\sin \theta$ and 8.

 $\tan \theta$. Give your answers as surds in their simplest form.

- (a) Find the coordinates of the point where the graph of $y = 2 \sin(2x + \frac{5}{6}\pi)$ crosses 9. the y-axis.
 - (b) Find the values of x, where $0 \le x \le 2\pi$, for which $y = \sqrt{2}$.

(8 marks)

10. Prove the following identities:

- a) $(3\sin x + \cos x)^2 + (\sin x 3\cos x)^2 \equiv 10$
- **b)** $\frac{1}{\sin x} \sin x \equiv \frac{\cos x}{\tan x}$

11. Find all the values of θ in the interval $0 \le \theta < 360^\circ$ for which

- (a) $\cos(\theta 10^{\circ}) = \cos 15^{\circ}$,
- (b) $\tan 2\theta = 0.4$,
- (c) $2\sin\theta\tan\theta = 3$.

12.

 $f(x) = 5\sin 3x^{\circ}$,

 $0 \le x \le 180$.

(a) Sketch the graph of f(x), indicating the value of x at each point where the graph intersects the x-axis

(b) Write down the coordinates of all the maximum and minimum points of f(x).

(c) Calculate the values of x for which $f(x) = 2.5$	(3)
	(4)

Get in the right zone...

MathsLearningZone.com

(3)

13. (a) Given that $3 \sin x = 8 \cos x$, find the value of $\tan x$.

(b) Find, to 1 decimal place, all the solutions of

$$3\sin x - 8\cos x = 0$$

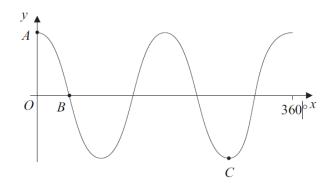
in the interval $0 \le x \le 360^\circ$.

(c) Find, to 1 decimal place, all the solutions of

$$3\sin^2 y - 8\cos y = 0$$

in the interval $0 \le y \le 360^\circ$.

14. The diagram shows the graph of $y = \cos 2x$ for $0^{\circ} \le x \le 360^{\circ}$.



(a) Write down the coordinates of the points A, B and C marked on the diagram.

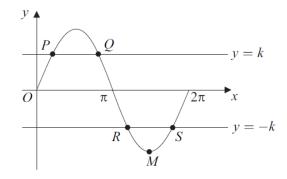
(4 marks)

- (b) Describe the single geometrical transformation by which the curve with equation $y = \cos 2x$ can be obtained from the curve with equation $y = \cos x$. (2 marks)
- (c) Solve the equation

$$\cos 2x = 0.37$$

giving all solutions to the nearest 0.1° in the interval $0^{\circ} \le x \le 360^{\circ}$. (No credit will be given for simply reading values from a graph.) (5 marks)

- **15.** (a) Solve the equation $\sin x = 0.8$ in the interval $0 \le x \le 2\pi$, giving your answers in radians to three significant figures. (3 marks)
 - (b) The diagram shows the graph of the curve $y = \sin x$, $0 \le x \le 2\pi$ and the lines y = k and y = -k.



The line y = k intersects the curve at the points P and Q, and the line y = -k intersects the curve at the points R and S.

The point M is the minimum point of the curve.

- (i) Write down the coordinates of the point M. (2 marks)
- (ii) The x-coordinate of P is α .

Write down the x-coordinate of the point Q in terms of π and α . (1 mark)

- (iii) Find the length of RS in terms of π and α , giving your answer in its simplest form. (2 marks)
- (c) Sketch the graph of $y = \sin 2x$ for $0 \le x \le 2\pi$, indicating the coordinates of points where the graph intersects the x-axis and the coordinates of any maximum points. (5 marks)

Get in the right zone...