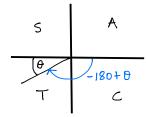
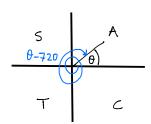

C2 - Chapters 8 and 10 - Trigonometry - Extra practice - Solutions

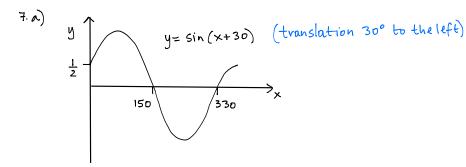
1. a)
$$\sin(540-\theta) = \sin\theta$$





c)
$$tan(-180+\theta) = tan\theta$$

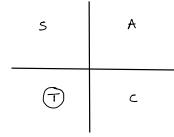
9)


$$2a$$
) $tan x = 5$

Let w= siny =>
$$3w^2 - 8w - 3 = 0$$

 $(3w + 1)(w - 3) = 0$

$$W = \frac{1}{3} \quad 0 \quad W = \frac{1}{3}$$


$$y = 2\pi n - 0.339837$$

$$y = 3.48, 5.94$$

Sin
$$(x+30) = -\frac{1}{2}$$

 $x = \sin^{-1}(-\frac{1}{2}) = -30$
 $x+30 = 360n - 30 = 7 \times = 360n - 60$
 $x+30 = 360n + |80+30| = 7 \times = 360n + |80|$
 $x = |80,300|$

8.

2

$$\sqrt{2^2-1^2}=\sqrt{3}$$

$$\sin\theta = -\sqrt{3}/2$$
 $\tan\theta = \sqrt{3}$

9 a) Cuts the y-axis => X=0 => y=
$$2\sin(5\pi/6) = 1$$
 : (0,1)

b)
$$2\sin(2x + \frac{5\pi}{6}) = \sqrt{2}$$

 $\sin(2x + \frac{5\pi}{6}) = \frac{\sqrt{2}}{2}$
 $\alpha = \sin^{-1}(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}$
 $2x + \frac{5\pi}{6} = 2\pi n + \frac{\pi}{4} \implies x = \pi n - \frac{\pi}{12}$
 $2x + \frac{5\pi}{6} = 2\pi n + \pi - \frac{\pi}{4} \implies x = \pi n - \frac{\pi}{12}$
 $x = \frac{5\pi}{12}, \frac{11\pi}{12}, \frac{17\pi}{12}, \frac{23\pi}{12}$

10 &) LHS =
$$(3\sin x + \cos x)^2 + (\sin x - 3\cos x)^2$$

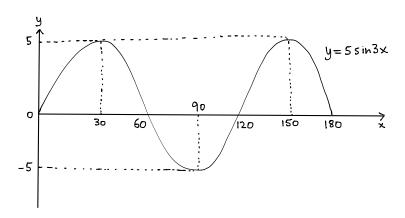
= $9\sin^3 x + 3\sin x \cos x + 3\cos x \sin^3 x + \sin^3 x - 3\sin x \cos x - 3\cos x \sin x + 9\cos^3 x$

= $10\sin^3 x + 10\cos^3 x$

= $10\sin^3 x + 10\cos^3 x$

= $10\sin^3 x + \cos^3 x$) = $10 = RHS$ AS REQUIRED

b) LHS = $\frac{1}{\sin x}$


= $\frac{1}{$

Let $y = 600 = 2y^2 + 3y - 2 = 0$

$$(2y-1)(y+2)=0$$

$$y=\frac{1}{2}$$
 OR $y=-2$
 $\cos\theta = \frac{1}{2}$ $\cos\theta = -2$
 $\alpha = \cos^{-1}(\frac{1}{2}) = 60$ Reject, not valid

$$\theta = 360n \pm 60$$

 $\theta = 60,300$

5
$$\sin 3x = 2.5$$

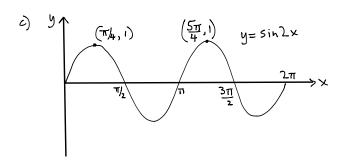
 $\sin 3x = \frac{1}{2}$
 $\alpha = \sin^{-1}(\frac{1}{2}) = 30$

$$3x = 360h + 30$$
 => $x = 120h + 10$
 $3x = 360h + 180 - 30$ => $x = 120h + 50$

13 a)
$$3\sin x = 8\cos x$$

 $3\sin x = 8 \implies \tan x = 8/3$
 $\cos x$

$$\alpha = \tan^{-1}(8/3) = 69.44395478$$


2)
$$3 \sin^2 y - 8 \cos y = 0$$

 $3(1-\cos^2 y) - 8 \cos y = 0$
 $3-3 \cos^2 y - 8 \cos y = 0$
 $3 \cos^2 y + 8 \cos y - 3 = 0$
Let $w = \cos y \Rightarrow 3w^2 + 8w - 3 = 0$
 $(3w-1)(w+3) = 0$
 $w = \frac{1}{3}$ OR $w = -3$
 $\cos y = \frac{1}{3}$ $\cos y = -3$
 $a = \cos^{-1}(1/3) = 109.47122$ Reject, not valid $y = 360n \pm 109.47122$

14. a) A (0,1)
$$\beta(45,0)$$
 $\zeta(270,-1)$

- b) Stretch along the x-axis, scale factor 1/2.
- 2) ω 5 2x=0.37 ω = ω 5⁻¹ (0.37) = 68.28 438272 2x=360n ± 68.28 438272 ω = 180n ± 34.142 19136

15 a)
$$\sin x = 0.8$$

 $\alpha = \sin^{-1}(0.8) = 0.927295218$
 $x = 2\pi n + \pi - 0.927295218$
 $x = 2\pi n + \pi - 0.927295218$

iii) Length of RS = length of PQ =
$$\pi$$
- α - α = π - 2α

