
C2 - Chapters 8 and 10 - Trigonometry - Summary

90-0
$$0$$
 Sin $\theta = \frac{opp}{hyp}$ cos $\theta = \frac{adj}{hyp}$ tan $\theta = \frac{opp}{adj}$

adj

b Soft CAH TOA

Opp

Some Old Horses Can Always Hide Their Old Ages

2) Pythagoras' theorem

$$a^2 + b^2 = c^2$$

$$8 \sin \theta = \frac{b}{c}$$

$$\cos \theta = \frac{a}{c}$$

$$\cos (90 - \theta) = \frac{b}{c}$$

$$\tan \theta = \frac{b}{a}$$

$$\tan (90 - \theta) = \frac{a}{b}$$

$$\tan (90 - \theta) = \frac{b}{a}$$

$$\sin\theta = \cos(90-\theta)$$
 lg $\sin 47 = \cos 43$

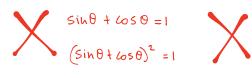
$$\cos\theta = \sin(90-\theta)$$

$$\cos \theta = \sin (90-\theta)$$
 Lq $\cos 88 = \sin 2$

$$tan\theta = \frac{1}{tan(90-\theta)}$$

$$tan\theta = \frac{1}{tan(90-\theta)}$$
 eg $tan 70 = \frac{1}{tan 20}$

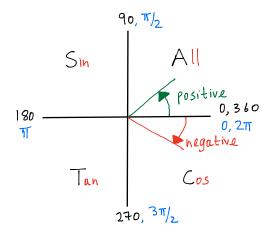
*
$$\tan \theta = \frac{b}{a} = \frac{b/c}{a/c} = \frac{\sin \theta}{\cos \theta}$$


*
$$a^2 + b^2 = c^2$$

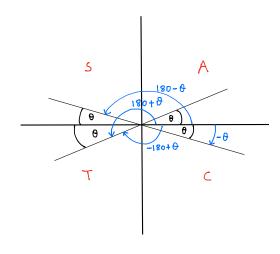
$$(c \cos \theta)^2 + (c \sin \theta)^2 = c^2$$

$$c^2 \cos^2 \theta + c^2 \sin^2 \theta = c^2$$

$$665^2\theta + \sin^2\theta = 1$$


Avoid Common mistakes like

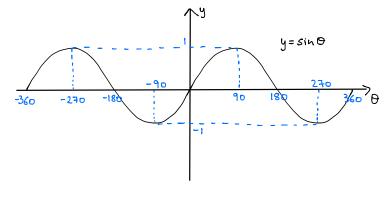
* Sin, cos and tan of some common angles


			9		
Degrees Radians	D 0	30 T/6	45 7/4	60 π/3	9 ₀ 7/2
Sin	0	1/2	12/2	13/2	1
Cos	1	V3/2	VZ/2	1/2	0
Tan	0	13/3	1	V3	∞

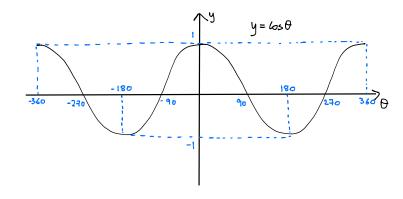
*

All Scientists Take Chemistry

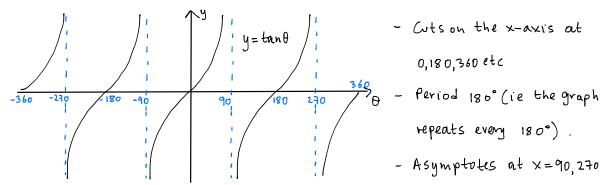
* We can derive "nice" relationships between angles in the four quadrants


lo

$$SIN(180-\theta) = SIN\theta$$


$$sin(180+\theta) = -sin\theta$$

and many others.


* Graphs of sind, coso, tand

- Maximum: 1
- Minimum: -1
- Cuts on the x-axis at 0,180,360 etc
- Period 360° (ie the graph repeats every 360°).

- Maximum: 1
- Minimum: -1
- Cuts on the x-axis at 90,270 etc
- Period 360° (ie the graph repeats every 360°).

- Cuts on the x-axis at
- Asymptotes at x=90,270

* Transformations of graphs

Translation & units to the left

- f (KX)

Stretch along the horizontal by scale factor 1/k

- { (x)+x

Translation a units up

Stretch along the vertical by scale factor k

- f(-x)

Reflection along the y-axis

Reflection along the x-axis

Solving trigonometric equations (using the formulae)

$$\sin \theta : \begin{cases} \theta = 360n + \alpha & \theta = 2\pi n + \alpha \\ \theta = 360n + 180 - \alpha & \theta = 2\pi n + \pi - \alpha \end{cases}$$

 $650: \theta = 360n \pm \alpha$

0=2711 +x

 $tan\theta: \theta = 180n + x$

0= Tn+ x

- * If you are asked to prove an identity then start from one side and gradually work your way to the other side of the identity
 - Do not work on both sides of the identity at the same time
 - Show all workings in every Letail.