- 1. Given that $\cos ecA = \frac{5}{3}$, $0 < A < 90^{\circ}$ and that $\sin B = \frac{5}{13}$, $90^{\circ} < B < 180^{\circ}$, find the exact value of: (i) $\sin 2B$
 - (ii) $\sin(A-B)$
- 2. Find the values of x in the interval $0 < x < 270^{\circ}$ which satisfy the equation

$$\frac{\tan 2x + \tan 40^\circ}{1 - \tan 2x \tan 40^\circ} = 1.$$

- 3. Find the value of k such that for all real values of x, $\cos\left(x + \frac{\pi}{3}\right) \cos\left(x \frac{\pi}{3}\right) = k$.
- 4. Solve each equation for *x* in the interval $0^{\circ} \le x \le 360^{\circ}$.
 - (a) $\cos 2x + 3\sin x = 2$
 - (b) $3\cos(2\theta + 60)^\circ \sin(2\theta 30)^\circ = 0$
- 5. Prove each identity.
 - (a) $\tan x(1 + \cos 2x) \equiv \sin 2x$

(b)
$$\frac{2}{1+\cos x} \equiv \sec^2 \frac{x}{2}$$

Get in the right zone...

MathsLearningZone.com

- 6. (a) Express $\cos x \sin x$ in the form $R\cos(x+\alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (b) Find the maximum value of $\cos x \sin x$ and the smallest positive value of x for which this occurs.
 - (c) Using the identity

$$\cos X + \cos Y \equiv 2\cos\frac{X+Y}{2}\cos\frac{X-Y}{2}$$

find in terms of π the values of x in the interval $[0, \pi]$ for which

$$\cos x + \sqrt{2} \cos \left(3x - \frac{\pi}{4} \right) = \sin x \, .$$

- 7. (a) Prove that for all real values of x, $\cos(x+30)^\circ + \sin x \equiv \cos(x-30)^\circ$.
 - (b) Hence, find the exact value of $\cos 75^\circ \cos 15^\circ$, giving your answer in the form $k\sqrt{2}$.