Worksheet on Chapter 7 - Further Trigonometry

1. Given that $\operatorname{cosec} A=\frac{5}{3}, 0<A<90^{\circ}$ and that $\sin B=\frac{5}{13}, 90^{\circ}<B<180^{\circ}$, find the exact value of:
(i) $\sin 2 B$
(ii) $\sin (A-B)$
2. Find the values of x in the interval $0<x<270^{\circ}$ which satisfy the equation

$$
\frac{\tan 2 x+\tan 40^{\circ}}{1-\tan 2 x \tan 40^{\circ}}=1
$$

3. Find the value of k such that for all real values of $x, \cos \left(x+\frac{\pi}{3}\right)-\cos \left(x-\frac{\pi}{3}\right)=k$.
4. Solve each equation for x in the interval $0^{\circ} \leq x \leq 360^{\circ}$.
(a) $\cos 2 x+3 \sin x=2$
(b) $3 \cos (2 \theta+60)^{\circ}-\sin (2 \theta-30)^{\circ}=0$
5. Prove each identity.
(a) $\tan x(1+\cos 2 x) \equiv \sin 2 x$
(b) $\frac{2}{1+\cos x} \equiv \sec ^{2} \frac{x}{2}$
6. (a) Express $\cos x-\sin x$ in the form $R \cos (x+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(b) Find the maximum value of $\cos x-\sin x$ and the smallest positive value of x for which this occurs.
(c) Using the identity

$$
\cos X+\cos Y \equiv 2 \cos \frac{X+Y}{2} \cos \frac{X-Y}{2}
$$

find in terms of π the values of x in the interval $[0, \pi]$ for which

$$
\cos x+\sqrt{2} \cos \left(3 x-\frac{\pi}{4}\right)=\sin x .
$$

7. (a) Prove that for all real values of $x, \cos (x+30)^{\circ}+\sin x \equiv \cos (x-30)^{\circ}$.
(b) Hence, find the exact value of $\cos 75^{\circ}-\cos 15^{\circ}$, giving your answer in the form $k \sqrt{2}$.
