CORE MATHEMATICS 3 CHAPTER 8 – DIFFERENTIATION EXTRA PRACTICE

1. Find $\frac{dy}{dx}$ of the following: **a)** $y = \sqrt{5x-4}$ **b)** $y = x^2 \sec 2x$ **c)** $y = \frac{\cos x^2}{2x}$ **d)** $y = (e^{2x} + 1)^{\frac{1}{2}}$ **e)** $y = 5\cos ec^2 2x$ **f)** $y = \ln(2x-1)$ **g)** $y = x \cdot \sin \frac{2x}{3}$

2. Given that $x = \frac{y+1}{3-2y}$

find and simplify an expression for $\frac{dy}{dx}$. Hence find $\frac{dy}{dx}$ at the point (1, 2).

- **3.** The curve *C* has the equation $y = e^{2x} \sec x$, $\frac{-\pi}{2} < x < \frac{\pi}{2}$.
 - a) Find an equation for the tangent to *C* at the point where the curve crosses the *y*-axis.
 - **b**) Find, to 2 decimal places, the *x*-coordinate of the stationary point to C.
- **4.** The curve *C* has equation $y = x^2 5x + 2\ln\frac{x}{3}$, x > 0.

Find the exact coordinates of the stationary point.