The G C School of Careers
Department of Mathematics

Homework Assignment On VECTORS

1. The vector equations of the lines L_{1} and L_{2} are given by:

$$
\begin{aligned}
L_{1}: \quad \boldsymbol{r} & =\boldsymbol{i}+3 \boldsymbol{j}+5 \boldsymbol{k}+\lambda(\mathbf{i}+2 \boldsymbol{j}-\boldsymbol{k}) \\
L_{2}: & \boldsymbol{r}=-2 \boldsymbol{i}+3 \boldsymbol{j}-4 \boldsymbol{k}+\mu(2 \boldsymbol{i}+\boldsymbol{j}+4 \boldsymbol{k}),
\end{aligned}
$$

where λ and μ are parameters.
(a) Show that L_{1} and L_{2} intersect and find the coordinates of B, their point of intersection.
(b) Show that L_{1} is perpendicular to L_{2}.

The point A with x-coordinate 4 lies on L_{1} and the point C with x-coordinate 6 lies on L_{2}.
(c) Find, in its simplest form, the exact area of the triangle $A B C$.
2. The points A and B have coordinates $(3,9,-7)$ and $(13,-6,-2)$ respectively.
(a) Find, in vector form, an equation for the line l which passes through A and B.
(b) Show that the point C with coordinates $(9,0,-4)$ lies on l.

The point D is the point on l closest to the origin, O.
(c) Find the coordinates of D.
(d) Find the area of triangle $O A B$ to 3 significant figures.
3. Referred to an origin O, the points A and B have position vectors given by:

$$
\begin{aligned}
& \overrightarrow{O A}=7 \boldsymbol{i}+3 \boldsymbol{j}+8 \boldsymbol{k} \\
& \overrightarrow{O B}=5 \boldsymbol{i}+4 \boldsymbol{j}+6 \boldsymbol{k}
\end{aligned}
$$

(a) Show that the point P with position vector given by:

$$
\overrightarrow{O P}=(5-2 \lambda) \boldsymbol{i}+(4+\lambda) \boldsymbol{j}+(6-2 \lambda) \boldsymbol{k}
$$

where λ is a parameter, lies on the straight line L passing through the points A and B.
(b) Find the value of λ for which $O P$ is perpendicular to L.

With centre O and radius $O A$, a circle is drawn to cut the line L at the points A and C.
(c) Determine the position vector of C.
4. A line l_{1} passes through the point A, with position vector $5 \boldsymbol{i}+3 \boldsymbol{j}$, and the point B, with position vector $-2 \boldsymbol{i}-4 \boldsymbol{j}+7 \boldsymbol{k}$.
(a) Write down an equation of the line l_{1}.

A second line l_{2} has equation $\boldsymbol{r}=\mathbf{i}-3 \mathbf{j}-4 \boldsymbol{k}+\mu(\mathbf{i}+2 \boldsymbol{j}+3 \boldsymbol{k})$, where μ is a parameter.
(b) Show that l_{1} and l_{2} are perpendicular to each other.
(c) Show that the two lines meet, and find the position vector of the point of intersection.

The point C has position vector $2 \mathbf{i}-\boldsymbol{j}-\boldsymbol{k}$.
(d) Show that C lies on l_{2}.

The point D is the image of C after reflection in the line l_{1}.
(e) Find the position vector of D.

