

Homework Assignment On VECTORS

1. The vector equations of the lines L_1 and L_2 are given by:

$$L_{1}: \quad \mathbf{r} = \mathbf{i} + 3\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} - \mathbf{k})$$
$$L_{2}: \mathbf{r} = -2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} + 4\mathbf{k}),$$

where λ and μ are parameters.

- (a) Show that L_1 and L_2 intersect and find the coordinates of *B*, their point of intersection.
- (**b**) Show that L_1 is perpendicular to L_2 .

The point A with x – coordinate 4 lies on L_1 and the point C with x – coordinate 6 lies on L_2 .

- (c) Find, in its simplest form, the exact area of the triangle *ABC*.
- 2. The points A and B have coordinates (3, 9, -7) and (13, -6, -2) respectively.
 - (a) Find, in vector form, an equation for the line l which passes through A and B.
 - (b) Show that the point C with coordinates (9, 0, -4) lies on l.

The point D is the point on l closest to the origin, O.

- (c) Find the coordinates of D.
- (d) Find the area of triangle OAB to 3 significant figures.

3. Referred to an origin O, the points A and B have position vectors given by:

$$OA = 7i + 3j + 8k$$
$$\overrightarrow{OB} = 5i + 4j + 6k$$

(a) Show that the point *P* with position vector given by:

$$OP = (5 - 2\lambda)\mathbf{i} + (4 + \lambda)\mathbf{j} + (6 - 2\lambda)\mathbf{k}$$

where λ is a parameter, lies on the straight line *L* passing through the points *A* and *B*.

(**b**) Find the value of λ for which *OP* is perpendicular to *L*.

With centre O and radius OA, a circle is drawn to cut the line L at the points A and C.

- (c) Determine the position vector of *C*.
- 4. A line l_1 passes through the point A, with position vector 5i + 3j, and the point B, with position vector -2i 4j + 7k.

(a) Write down an equation of the line l_1 .

A second line l_2 has equation $\mathbf{r} = \mathbf{i} - 3\mathbf{j} - 4\mathbf{k} + \mu(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$, where μ is a parameter.

- (b) Show that l_1 and l_2 are perpendicular to each other.
- (c) Show that the two lines meet, and find the position vector of the point of intersection.

The point *C* has position vector 2i - j - k.

(d) Show that C lies on l_2 .

The point *D* is the image of *C* after reflection in the line l_1 .

(e) Find the position vector of *D*.