THE GC SCHOOL OF CAREERS

DEPARTMENT OF MATHEMATICS

REVISION GUIDE

CORE MATHEMATICS 4

COORDINATE GEOMETRY

Key Points

1. Cartesian equation

To find the cartesian equation of a curve, use the parametric pair of equations and try to eliminate the parameter (usually t or θ).

Method 1: If the parametric equations are not trigonometric rearrange one of them and use the substitution method.

Method 2: If the parametric equations are trigonometric then choose the appropriate trigonometric formula and substitute both parametric equations there. (PRACTICE)
2. Using the parametric equations to find:

- x - intercept $(y=0)$

Substitute $y=0$ into the parametric equation containing y and find the value(s) of t. Substitute the value(s) of t into the parametric equation containing x to find the x coordinate.

- \boldsymbol{y}-intercept $(x=0)$

Substitute $x=0$ into the parametric equation containing x and find the value(s) of t. Substitute the value(s) of t into the parametric equation containing y to find the y coordinate.

- Point(s) of intersection with a line

Substitute the parametric equations into the line to create an equation containing t only. Solve to find the value(s) t. Then substitute the value(s) into both parametric equations to find the x and y coordinates of the point(s) of intersection.
3. Area under the curve

- Using the Cartesian equation

$$
\int_{x 1}^{x 2}(y) d x
$$

- Using the parametric equations $\int_{t 1}^{t 2}\left(y \cdot \frac{d x}{d t}\right) d x$

