THE GC SCHOOL OF CAREERS

DEPARTMENT OF MATHEMATICS

REVISION GUIDE

CORE MATHEMATICS 4

COORDINATE GEOMETRY

Key Points

1. Cartesian equation

To find the cartesian equation of a curve, use the parametric pair of equations and try to eliminate the parameter (usually t or θ).

Method 1: If the parametric equations are not trigonometric rearrange one of them and use the substitution method.

Method 2: If the parametric equations are trigonometric then choose the appropriate trigonometric formula and substitute both parametric equations there. (PRACTICE)

2. Using the parametric equations to find:

• *x*-intercept (y = 0)

Substitute y = 0 into the parametric equation containing y and find the value(s) of t. Substitute the value(s) of t into the parametric equation containing x to find the x-coordinate.

• *y*-intercept (*x* = 0)

Substitute x = 0 into the parametric equation containing x and find the value(s) of t. Substitute the value(s) of t into the parametric equation containing y to find the y-coordinate.

• Point(s) of intersection with a line

Substitute the parametric equations into the line to create an equation containing t only. Solve to find the value(s) t. Then substitute the value(s) into both parametric equations to find the x and y coordinates of the point(s) of intersection.

3. Area under the curve

• Using the Cartesian equation

 $\int_{x1}^{x2} (y) \, dx$ $\int_{0}^{t^{2}} \left(y \cdot \frac{dx}{dt} \right) dx$

• Using the parametric equations