THE GC SCHOOL OF CAREERS

DEPARTMENT OF MATHEMATICS

REVISION GUIDE

CORE MATHEMATICS 4

BINOMIAL EXPANSION

Key Points

1. Binomial Expansion Formula (LEARN)

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots
$$

If x is negative or a fraction then the expansion is valid only for the range of values

$$
|x|<1
$$

2. Adapting the binomial expansion to include all expressions of the form $(a+b x)^{n}$

Take out a common factor of a.

$$
\text { e.g. } \frac{1}{3+4 x}=(3+4 x)^{-1}=\left[3\left(1+\frac{4 x}{3}\right)\right]^{-1}=\frac{1}{3}\left(1+\frac{4 x}{3}\right)^{-1}
$$

3. Using partial fractions

$$
\text { e.g. } \begin{aligned}
\frac{7+x}{(3-x)(2+x)} & =\frac{2}{3-x}+\frac{1}{2+x} \quad \text { [Using partial fractions] } \\
& =2(3-x)^{-1}+(2+x)^{-1}=\frac{2}{3}\left(1-\frac{x}{3}\right)^{-1}+\frac{1}{2}\left(1+\frac{x}{2}\right)^{-1}
\end{aligned}
$$

4. Finding an approximation using a suitable value of x

The suitable value of x you are going to use must be in the range for which the expansion is valid.
Try using $x=0.1$ or $x=0.01$ or $x=0.001$ and which gives the required value.

Step 1: Replace all x_{s} by the suitable value, both in the exact and the expanded expresion.
Step 2: Modify the value obtained from the expansion to suit the required approximation.

$$
\% \text { error }=\frac{\mid \text { Exact }- \text { Expected } \mid}{\text { Exact }} \times 100
$$

