CORE MATHEMATICS 2 - COORDINATE GEOMETRY EXTRA PRACTICE

1. Find an equation of the circle
a) with centre $(1,-2)$ which passes through the point $(4,2)$.
b) with centre $(-5,7)$ which passes through the point $(0,5)$.
2. The points $P(0,1), Q(3,10)$ and $R(6,9)$ all lie on circle C.
a) Show that $P \hat{Q} R$ is a right-angle.
b) Hence, show that C has the equation $x^{2}+y^{2}-6 x-10 y+9=0$.
3. Find in each case whether the given point lies inside, outside or on the given circle.
a) $(0,9) \quad x^{2}+y^{2}=64$
b) $(4,7) x^{2}+y^{2}-2 x-6 y-26=0$
c) $(7,-3) x^{2}+y^{2}+10 x-4 y=140$
d) $(-4,1) x^{2}+y^{2}+2 x+8 y-13=0$
4. The circle C, with centre A, has equation

$$
x^{2}+y^{2}-6 x+4 y-12=0
$$

a) Find the coordinates of A.
b) Show that the radius of C is 5 .

The points P, Q and R lie on C. The length of $P Q$ is 10 and the length of $P R$ is 3.
c) Find the length of $Q R$, giving your answer to 1 decimal place.
5. A circle C has equation $x^{2}+y^{2}-10 x+6 y-15=0$.
a) Find the coordinates of the centre of C.
b) Find the radius of C.
6. The circle C with centre (a, b) and radius 5 , touches the x-axis at $(4,0)$, as shown in the figure below.

a) Write down the value of a and the value of b.
b) Find a Cartesian equation of C.

A tangent to the circle, drawn from the point $P(8,17)$, touches the circle at T.
c) Find, to 3 significant figures, the length of $P T$.
7. A circle C has centre $(3,4)$ and radius $3 \sqrt{2}$. A straight line has equation $y=x+3$.
a) Write down an equation of the circle C.
b) Calculate the exact coordinates of the two points, where the line intersects C, giving your answers as surds.
c) Find the distance between these two points.
8. The line with equation $y=1-x$ intersects the circle with equation $x^{2}+y^{2}+6 x+2 y=27$ at the points A and B.
Find the length of the chord $A B$, giving your answer in the form $k \sqrt{2}$.
9. Show that the line with equation $y=2 x+1$ is a tangent to the circle with equation $x^{2}+y^{2}-8 x-8 y+27=0$ and find the coordinates of the point where they touch.
10. The line with equation $y=m x$ is a tangent to the circle with equation
$x^{2}+y^{2}-8 x-16 y+72=0$.
Find the two possible values of m.
11. The line $A B$ is a diameter of circle C.

Given that A has coordinates $(-5,6)$ and B has coordinates $(3,8)$, find
a) The coordinates of the centre of C ,
b) A Cartesian equation for C ,
c) An equation of the tangent to C at A .
12. The points $P(-4,9)$ and $Q(-2,-5)$ are such that $P Q$ is a diameter of circle C.
a) Find the coordinates of the centre of C .
b) Find an equation for C .
c) Show that the point $R(2,7)$ lies on C .
d) Hence, state the size of $P \hat{R} Q$, giving a reason for your answer.
13. The points $P(-10,2), Q(8,14)$ and $R(-2,-10)$ all lie on circle C.
a) Show that PR is perpendicular to PQ .
b) Hence, show that C has the equation $x^{2}+y^{2}-6 x-4 y-156=0$.

