C2 - Chapter 4-Coordinate geometry in the (x, y) plane

* For the points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
- their midpoint has coordinates $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
- the distance between them is given by $\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}$
- the gradient of the line joining them is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
* For a line with gradient m and passing through the point with coordinates $\left(x_{1}, y_{1}\right)$ its equation is given by $y-y_{1}=m\left(x-x_{1}\right)$
* Two lines with gradients m_{1} and m_{2}, respectively are perpendicular if $m_{1} \cdot m_{2}=-1$
* Circle terminology

* A circle with radius r and centre (α, β) has equation $(x-\alpha)^{2}+(y-b)^{2}=r^{2}$
* The perpendicular from the centre of a circle to a chord bisects the chord
* The angle between the tangent and a radius is 90°
* A line may meet a circle
- twile
- once (in this lase the line is a tangent)
- never

