THE GC SCHOOL OF CAREERS

DEPARTMENT OF MATHEMATICS

EXTRA PRACTICE

CORE MATHEMATICS 4

DIFFERENTIATION

EXERCISES

- **1.** Find $\frac{dy}{dx}$ for the following implicit functions:
 - i) $3x^2 + y^2 = 9$
 - ii) $x^2 y + y^3 = 2x$
 - iii) $3x^2 y^2 + 5x 6y + 5 = 0$
 - iv) $y^3 + x^2 y 2x = 0$
 - v) $y^3 + x \ln y = 3x^2$
- **2.** Given that $\sin y = xy + x^2$, find $\frac{dy}{dx}$ in terms of x and y.
- **3.** Find the gradient of the curve $4x^2 + 2xy + y^2 = 12$ at the point (1,2).
- 4. The equation of a curve is $2x^2 + xy + y^2 = 14$. Show that there are two stationary points on the curve, and find their coordinates.
- 5. Find the equation of the normal to the curve

$$x^3 + 4x^2y + y^3 = 6$$

at the point (1,1), giving your answer in the form ax + by + c = 0, where a, b, and c are integers.

- **6.** The equation of a curve is $x^2 y xy^2 = 2$.
 - a) Show that $\frac{dy}{dx} = \frac{y^2 2xy}{x^2 2xy}$.
 - b) Show that if $\frac{dy}{dx} = 0$, then y = 2x.
 - c) Hence, find the coordinates of the point on the curve where the tangent is parallel to the *x*-axis.