THE GC SCHOOL OF CAREERS

DEPARTMENT OF MATHEMATICS

EXTRA PRACTICE

CORE MATHEMATICS 4

DIFFERENTIATION

EXERCISES

1. Find $\frac{d y}{d x}$ for the following implicit functions:
i) $\quad 3 x^{2}+y^{2}=9$
ii) $\quad x^{2} y+y^{3}=2 x$
iii) $3 x^{2}-y^{2}+5 x-6 y+5=0$
iv) $y^{3}+x^{2} y-2 x=0$
v) $y^{3}+x \ln y=3 x^{2}$
2. Given that $\sin y=x y+x^{2}$, find $\frac{d y}{d x}$ in terms of x and y.
3. Find the gradient of the curve $4 x^{2}+2 x y+y^{2}=12$ at the point $(1,2)$.
4. The equation of a curve is $2 x^{2}+x y+y^{2}=14$.

Show that there are two stationary points on the curve, and find their coordinates.
5. Find the equation of the normal to the curve

$$
x^{3}+4 x^{2} y+y^{3}=6
$$

at the point $(1,1)$, giving your answer in the form $a x+b y+c=0$, where a, b, and c are integers.
6. The equation of a curve is $x^{2} y-x y^{2}=2$.
a) Show that $\frac{d y}{d x}=\frac{y^{2}-2 x y}{x^{2}-2 x y}$.
b) Show that if $\frac{d y}{d x}=0$, then $y=2 x$.
c) Hence, find the coordinates of the point on the curve where the tangent is parallel to the x-axis.

