THEGCSAHOOLOF CARERS

DEPARIMENTOF MATHEMATICS

EXIRA PRACTICE

CORE MATHEMATICS4

DIFFRENIIATION

EXERASES

1 a) Find $\frac{d y}{d x}$ when $y=e^{x} \sin 2 x$.
Hence find the equation of the tangent to the curve $y=e^{x} \sin 2 x$ at the origin.
b) Show that the equation of the normal to the curve $y=e^{x} \sin 2 x$ at the point where $x=\pi$ is

$$
2 e^{\pi} y+x=\pi .
$$

2. A curve is given by the parametric equations

$$
x=2-t^{2}, \quad y=4 t .
$$

a) Find $\frac{d y}{d x}$ in terms of t.
b) Hence find the equation of the normal to the curve at the point $(-14,16)$, giving your answer in the form

$$
y=m x+c .
$$

3. A curve is defined by the parametric equations

$$
x=3-4 t \quad y=1+\frac{2}{t}
$$

a) Find $\frac{d y}{d x}$ in terms of t.
b) Find the equation of the tangent to the curve at the point where $t=2$, giving your answer in the form $a x+b y+c=0$, where a , b and care integers.
c) Verify that the Cartesian equation of the curve can be written as

$$
(x-3)(y-1)+8=0
$$

4. A curve C is described by the equation

$$
3 x^{2}+4 y^{2}-2 x+6 x y-5=0
$$

Find an equation of the tangent to C at the point ($1,-2$), giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
5. A curve has equation $7 x^{2}+48 x y-7 y^{2}+75=0$.
a) Use implicit differentiation to find an expression for $\frac{d y}{d x}$.
A and B are two distinct points on the curve. At each of these points the gradient of the curve is equal to $\frac{2}{11}$.
b) Show that $x+2 y=0$ at the points A and B.
c) Find the coordinates of the points A and B.

