Chapter 4 - Extra practice 2 - Solutions

1. a)
$$\frac{dy}{dx} = e^x \sin 2x + 2e^x \cos 2x$$

 $\frac{dy}{dx}\Big|_{x=0} = 2 = y-0 = 2(x-0)$
 $y=2x$

$$y=2x$$
b) When $x=\pi$, $y=0$ $\frac{dy}{dx}\Big|_{x=\pi} = 2e^{\pi t}$ => $M_{NORMAL} = -\frac{1}{2e^{\pi t}}$
=> $y-0=-\frac{1}{2e^{\pi t}}(x-\pi)$
=> $2e^{\pi t}y=-x+\pi$

2. a)
$$\frac{dx}{dt} = -2t$$
 $\frac{dy}{dt} = 4$ $\Rightarrow \frac{dy}{dx} = \frac{4}{-2t} = -\frac{2}{t}$

b) When
$$x=-14$$
, $y=16 = > 16=4t = > t=4$

$$\frac{dy}{dx}\Big|_{t=4} = -\frac{2}{4} = > M_{NORMAL} = 2 = > y-16=2(x+14)$$

$$y=2x+44$$

3. a)
$$\frac{dx}{dt} = -4$$
 $\frac{dy}{dt} = -\frac{2}{t^2}$ $\Rightarrow \frac{dy}{dx} = \frac{-\frac{2}{t^2}}{-4} = \frac{1}{2t^2}$
b) When $t=2$, $x=-5$, $y=2$, $\frac{dy}{dx} = \frac{1}{2}$

$$= y - 2 = \frac{1}{8}(x + 5)$$

$$= y - 2 = \frac{1}{8}(x + 5)$$

c)
$$X=3-4t => t=\frac{3-x}{4}$$

Substitute $t=\frac{3-x}{4}$ into $y=1+\frac{2}{t}$
 $=> y=1+\frac{2}{\frac{3-x}{4}}$
 $y=1+\frac{8}{3-x}$
 $y=1=\frac{8}{3-x}$
 $(y-1)(3-x)-8=0$

4.
$$6x + 8y \frac{dy}{dx} - 2 + 6y + 6x \frac{dy}{dx} = 0$$

When
$$x=1, y=-2 => 6-16 \frac{dy}{dx}-2 -12 + 6 \frac{dy}{dx} = 0 => \frac{dy}{dx} = \frac{4}{5}$$

 $y+2 = \frac{4}{5}(x-1)$

5. a)
$$14x + 48y + 48 \times \frac{dy}{dx} = 14y \frac{dy}{dx} = 0 = 7 \frac{dy}{dx} = \frac{14x + 48y}{14y - 48x}$$

b)
$$\frac{2}{11} = \frac{14x + 48y}{14y - 48x}$$

$$-75y^{2} + 75 = 0$$
 $y^{2} = 1$
 $y = 1$
 $y = 0$
 $y = -1$
 $y = 2$
 $(-2, 1)$
 $(2, -1)$