THE GC SCHOOL OF CAREERS

DEPARTMENT OF MATHEMATICS

EXTRA PRACTICE

CORE MATHEMATICS 4

DIFFERENTIATION

EXERCISES

1. The curve C is given by the equations $y=2 t, x=t^{2}+t^{3}$ where t is a parameter. Find the equation of the normal to C at the point P on C where $t=-2$.
2. At time t seconds the surface area of a cube is $A \mathrm{~cm}^{2}$ and its volume is $V \mathrm{~cm}^{3}$.

The volume of the cube is expanding at a uniform rate of $2 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
Show that $\frac{d A}{d t}=k A^{-\frac{1}{2}}$, where k is a constant to be determined.
3. Find $\frac{d y}{d x}$ when:
(a) $y=2^{x}$
(b) $y=x \cdot 3^{x}$
(c) $y=4^{\sqrt{x}}$
(d) $x^{2}+3 y^{2}-6 x=12$
(e) $x^{4}-4 x^{2} y^{2}+y=8$
4. The curve C has parametric equations $x=4 \cos 2 t, y=3 \sin t,-\frac{\pi}{2}<t<\frac{\pi}{2}$. A is the point $\left(2,1 \frac{1}{2}\right)$ and lis on C.
(a) Find the value of t at the point A.
(b) Find $\frac{d y}{d x}$ in terms of t.
(c) Show that an equation of the normal to C at A is $6 y-16 x+23=0$.

The normal at A cuts C at the point B.
(d) Find the y-coordinate of the point B.
5. The curve C has equation $5 x^{2}+2 x y-3 y^{2}+3=0$

The point P on the curve C has coordinates (1, 2).
(a) Find the gradient of the curve at P.
(b) Find the equation of the normal to the curve C at P, in the form $y=a x+b$, where a and b are constants.

ANSWERS

1. $y+4 x+20=0$
2. $\frac{d A}{d t}=8 \sqrt{6} A^{-\frac{1}{2}}, k=8 \sqrt{6}$
3. (a) $2^{x} \ln 2$
(b) $3^{x}+x \cdot 3^{x} \ln 3$
(c) $\frac{1}{2} x^{-\frac{1}{2}} 4^{\sqrt{x}} \ln 4$
(d) $\frac{3-x}{3 y}$
(e) $\frac{-4 x\left(x^{2}+2 y^{2}\right)}{8 x^{2} y+1}$
4. (a) $t=\frac{\pi}{6}$
(b) $\frac{d y}{d x}=-\frac{3}{16 \sin t}$
(c) $6 y-16 x+23=0$
(d) $-\frac{123}{64}$
5. (a) $\frac{d y}{d x}=\frac{7}{5}$
(b) $y=-\frac{5}{7} x+\frac{19}{7}$
