THE GC SCHOOL OF CAREERS

DEPARTMENT OF MATHEMATICS

EXTRA PRACTICE

CORE MATHEMATICS 4

DIFFERENTIATION

EXERCISES

- **1.** The curve *C* is given by the equations y = 2t, $x = t^2 + t^3$ where *t* is a parameter. Find the equation of the normal to C at the point P on C where t = -2.
- 2. At time t seconds the surface area of a cube is $A \text{ cm}^2$ and its volume is $V \text{ cm}^3$. The volume of the cube is expanding at a uniform rate of 2 cm³s⁻¹.

Show that $\frac{dA}{dt} = kA^{-\frac{1}{2}}$, where k is a constant to be determined.

3. Find
$$\frac{dy}{dx}$$
 when:

(a) $y = 2^x$ (b) $y = x \cdot 3^x$

(c)
$$y = 4^{\sqrt{x}}$$
 (d) $x^2 + 3y^2 - 6x = 12$

(e)
$$x^4 - 4x^2y^2 + y = 8$$

4. The curve *C* has parametric equations $x = 4\cos 2t$, $y = 3\sin t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$.

A is the point $\left(2, 1\frac{1}{2}\right)$ and lis on C.

- (a) Find the value of t at the point A.
- **(b)** Find $\frac{dy}{dx}$ in terms of *t*.
- (c) Show that an equation of the normal to C at A is 6y 16x + 23 = 0.

The normal at A cuts C at the point B.

(d) Find the *y*-coordinate of the point *B*.

5. The curve *C* has equation $5x^2 + 2xy - 3y^2 + 3 = 0$ The point *P* on the curve *C* has coordinates (1, 2).

- (a) Find the gradient of the curve at *P*.
- (b) Find the equation of the normal to the curve C at P, in the form y = ax + b, where a and b are constants.

[2004]

[1997]

ANSWERS

1.
$$y + 4x + 20 = 0$$

2. $\frac{dA}{dt} = 8\sqrt{6}A^{-\frac{1}{2}}, k = 8\sqrt{6}$
3. (a) $2^x \ln 2$ (b) $3^x + x \cdot 3^x \ln 3$ (c) $\frac{1}{2}x^{-\frac{1}{2}}4^{\sqrt{x}} \ln 4$ (d) $\frac{3-x}{3y}$ (e) $\frac{-4x(x^2 + 2y^2)}{8x^2y + 1}$
4. (a) $t = \frac{\pi}{6}$ (b) $\frac{dy}{dx} = -\frac{3}{16\sin t}$ (c) $6y - 16x + 23 = 0$ (d) $-\frac{123}{64}$

5. (a)
$$\frac{dy}{dx} = \frac{7}{5}$$
 (b) $y = -\frac{5}{7}x + \frac{19}{7}$