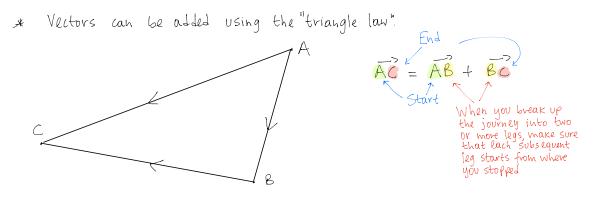
C4 - Chapter 5 - Vectors

- * A scalar quantity has only magnitule
- * A vector quantity has both magnitude and direction
- * Vectors that are equal have both the same magnitule and same direction.
- * Any vector parallel to the vector a may be written as ja, where g is a non-zero scalar.

l.g. Suppose a = (+j) = 3j + 3j

Then b= 3a => a and b are parallel vectors



* The modulus (or magnitule, or length, or distance) of vector a is written as [a].
 * A unit vector is a vector which has magnitude 1 unit
 Note: For any vector a, the vector

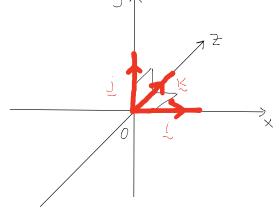
direction of a.

- * If $\gamma \alpha + \mu b = \gamma \alpha + \delta b$, and the non-zero vectors α and b are not parallel, then $\gamma = \gamma$ and $\mu = \delta$.
- * The position vector of a point A is the vector DA where O is the origin. DA is usually written as a
- $\ast \overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB} \overrightarrow{OA} = \cancel{b} \cancel{a}$

Get in the right zone...

MathsLearningZone.weebly.com

* The vectors i, j and k are unit vectors parallel to the x, y and z axes, and in the direction of x increasing, y increasing and z increasing respectively.



- * Vectors with Cartesian components can be written in column matrix form. ie $\chi_{j} + y_{j} + z_{k} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
- * The modulus of $x_1' + y_1' + z_2'$ is given by $\sqrt{x^2 + y^2 + z^2}$. This corresponds to the magnitude of the position vector of the point with coordinates (x, y, z) and is the same as the distance between the point and the origin.

* The distance between the points
$$(x_1, y_1, z_1)$$
 and (x_2, y_2, z_2) is given by $\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}$

* The scalar product of vectors \underline{a} and \underline{b} is defined by $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}| \cos \theta$ where θ is the angle between \underline{a} and \underline{b} . It follows that: (1) If \underline{a} and \underline{b} are parallel then $\underline{a} \cdot \underline{b} = |\underline{a}| |\underline{b}|$ (since $\cos \theta = 1$) (2) If \underline{a} and \underline{b} are perpendicular then $\underline{a} \cdot \underline{b} = 0$ (since $\cos \theta = 0$)

Get in the right zone...

MathsLearningZone.weebly.com

* If
$$a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ then $a \cdot b = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$

* A vector equation of the straight line passing through A and B, with position vectors a and & respectively is given by

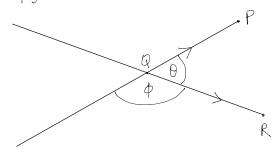
$$r = a + j(b-a) \quad \text{Where } j \text{ is a scalar parameter}$$

l.g. If A and B have coordinates (2,3.4) and (-1,-2,9) vespectively then
be find the equation of the straight line passing through A and B first
start by finding \overrightarrow{AB}
 $\overrightarrow{AB} = \begin{pmatrix} -1 \\ -2 \\ q \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -3 \\ -5 \\ 5 \end{pmatrix}$
 $\therefore r = 2i + 3j + 4k + j(-3i - 5j + 5k)$
Position
 $Vector$
 $= \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + j \begin{pmatrix} -3 \\ -5 \\ 5 \end{pmatrix}$
Both of these forms are acceptable

* The acute angle between two lines with direction vectors a and b, vespectively is given by

$$\omega = \left[\begin{array}{c} \underline{a} \cdot \underline{b} \\ \underline{a} \cdot \underline{b} \\ \underline{a} & \underline{b} \end{array} \right]$$

* NOTE: There are always two ougles between two lines, as shown in the figure below.



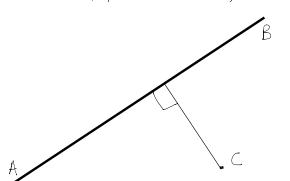
Obviously $\theta + \phi = 180^{\circ}$ In order to make sure that you are finding the correct angle check that both vectors point towards the same direction (either both inwards or both outwards

Get in the right zone...

MathsLearningZone.weebly.com

In this example, if I use \$\overline{PR}\$ and \$\overline{R}\$ I will find \$\overline{PR}\$. But if I use \$\overline{PR}\$ and \$\overline{R}\$ I will find \$\overline{PR}\$.

* NOTE: The shortest distance between a point and a line is always going to be the perpendicular distance as shown below.



Note that in such cases, you will be working in a right-angled triangle.

* NOTE: If you are asked to show that two lines intersect then you start by equating the i, j and k components of the two lines that will lead to 3 equations in 2 unknowns. Pick any of the two equations to solve simultaneously and then check that the values you have found also satisfy the third one.

Don't forget to write a conclusion (e.g. "Therefore the lines intersect").

(2, 1, -3)VECTORS COORDINATES Don't mix them up!