June 05 Q8. Liquid is pouring into a container at a constant rate of $20 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and is leaking out at a rate proportional to the volume of the liquid already in the container.
(a) Explain why, at time t seconds, the volume, $V \mathrm{~cm}^{3}$, of liquid in the container satisfies the differential equation

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=20-k V
$$

where k is a positive constant.

The container is initially empty.
(b) By solving the differential equation, show that

$$
V=A+B \mathrm{e}^{-k t}
$$

giving the values of A and B in terms of k.

Given also that $\frac{\mathrm{d} V}{\mathrm{~d} t}=10$ when $t=5$,
(c) find the volume of liquid in the container at 10 s after the start.

Jan 06 Q7. The volume of a spherical balloon of radius $r \mathrm{~cm}$ is $V \mathrm{~cm}^{3}$, where $V=\frac{4}{3} \pi r^{3}$.
(a) Find $\frac{\mathrm{d} V}{\mathrm{~d} r}$.

The volume of the balloon increases with time t seconds according to the formula

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1000}{(2 t+1)^{2}}, \quad t \geq 0
$$

(b) Using the chain rule, or otherwise, find an expression in terms of r and t for $\frac{\mathrm{d} r}{\mathrm{~d} t}$.
(c) Given that $V=0$ when $t=0$, solve the differential equation $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1000}{(2 t+1)^{2}}$, to obtain V in terms of t.
(d) Hence, at time $t=5$,
(i) find the radius of the balloon, giving your answer to 3 significant figures,
(ii) show that the rate of increase of the radius of the balloon is approximately $2.90 \times 10^{-2} \mathrm{~cm} \mathrm{~s}^{-1}$.

June 06 Q7.

At time t seconds the length of the side of a cube is $x \mathrm{~cm}$, the surface area of the cube is S cm^{2}, and the volume of the cube is $V \mathrm{~cm}^{3}$.

The surface area of the cube is increasing at a constant rate of $8 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.
Show that
(a) $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{k}{x}$, where k is a constant to be found,
(b) $\frac{\mathrm{d} V}{\mathrm{~d} t}=2 V^{\frac{1}{3}}$.

Given that $V=8$ when $t=0$,
(c) solve the differential equation in part (b), and find the value of t when $V=16 \sqrt{ }$.

Jan 07 Q4. (a) Express $\frac{2 x-1}{(x-1)(2 x-3)}$ in partial fractions.
(b) Given that $x \geq 2$, find the general solution of the differential equation

$$
\begin{equation*}
(2 x-3)(x-1) \frac{\mathrm{d} y}{\mathrm{~d} x}=(2 x-1) y . \tag{5}
\end{equation*}
$$

(c) Hence find the particular solution of this differential equation that satisfies $y=10$ at $x=$ 2 , giving your answer in the form $y=\mathrm{f}(x)$.

June 07 Q8. A population growth is modelled by the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k P
$$

where P is the population, t is the time measured in days and k is a positive constant.
Given that the initial population is P_{0},
(a) solve the differential equation, giving P in terms of P_{0}, k and t.

Given also that $k=2.5$,
(b) find the time taken, to the nearest minute, for the population to reach $2 P_{0}$.

In an improved model the differential equation is given as

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\lambda P \cos \lambda t
$$

where P is the population, t is the time measured in days and λ is a positive constant.
Given, again, that the initial population is P_{0} and that time is measured in days,
(c) solve the second differential equation, giving P in terms of P_{0}, λ and t.

Given also that $\lambda=2.5$,
(d) find the time taken, to the nearest minute, for the population to reach $2 P_{0}$ for the first time, using the improved model.

Jan 08 Q8. Liquid is pouring into a large vertical circular cylinder at a constant rate of 1600 $\mathrm{cm}^{3} \mathrm{~s}^{-1}$ and is leaking out of a hole in the base, at a rate proportional to the square root of the height of the liquid already in the cylinder. The area of the circular cross section of the cylinder is $4000 \mathrm{~cm}^{2}$.
(a) Show that at time t seconds, the height $h \mathrm{~cm}$ of liquid in the cylinder satisfies the differential equation

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=0.4-k \sqrt{ } h,
$$

where k is a positive constant.

When $h=25$, water is leaking out of the hole at $400 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
(b) Show that $k=0.02$.
(c) Separate the variables of the differential equation

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=0.4-0.02 \sqrt{ } h
$$

to show that the time taken to fill the cylinder from empty to a height of 100 cm is given by

$$
\begin{equation*}
\int_{0}^{100} \frac{50}{20-\sqrt{ } h} \mathrm{~d} h \tag{2}
\end{equation*}
$$

Using the substitution $h=(20-x)^{2}$, or otherwise,
(d) find the exact value of $\int_{0}^{100} \frac{50}{20-\sqrt{ } h} \mathrm{~d} h$.
(e) Hence find the time taken to fill the cylinder from empty to a height of 100 cm , giving your answer in minutes and seconds to the nearest second.

June 08 Q3.

Figure 2
Figure 2 shows a right circular cylindrical metal rod which is expanding as it is heated. After t seconds the radius of the rod is $x \mathrm{~cm}$ and the length of the rod is $5 x \mathrm{~cm}$.

The cross-sectional area of the rod is increasing at the constant rate of $0.032 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.
(a) Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when the radius of the rod is 2 cm , giving your answer to 3 significant figures.
(b) Find the rate of increase of the volume of the rod when $x=2$.

Jan 09 Q5.

Figure 2
A container is made in the shape of a hollow inverted right circular cone. The height of the container is 24 cm and the radius is 16 cm , as shown in Figure 2. Water is flowing into the container. When the height of water is $h \mathrm{~cm}$, the surface of the water has radius $r \mathrm{~cm}$ and the volume of water is $V \mathrm{~cm}^{3}$.
(a) Show that $V=\frac{4 \pi h^{3}}{27}$.
[The volume V of a right circular cone with vertical height h and base radius r is given by the formula $V=\frac{1}{3} \pi r^{2} h$.]

Water flows into the container at a rate of $8 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
(b) Find, in terms of π, the rate of change of h when $h=12$.

Jan 10 Q5. (a) Find $\int \frac{9 x+6}{x} \mathrm{~d} x, x>0$.
(b) Given that $y=8$ at $x=1$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(9 x+6) y^{\frac{1}{3}}}{x}
$$

giving your answer in the form $y^{2}=\mathrm{g}(x)$.

Jan 10 Q6. The area A of a circle is increasing at a constant rate of $1.5 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. Find, to 3 significant figures, the rate at which the radius r of the circle is increasing when the area of the circle is $2 \mathrm{~cm}^{2}$.

June 10 Q8.

Figure 2
Figure 2 shows a cylindrical water tank. The diameter of a circular cross-section of the tank is 6 m . Water is flowing into the tank at a constant rate of $0.48 \pi \mathrm{~m}^{3} \mathrm{~min}^{-1}$. At time t minutes, the depth of the water in the tank is h metres. There is a tap at a point T at the bottom of the tank. When the tap is open, water leaves the tank at a rate of $0.6 \pi h \mathrm{~m}^{3} \mathrm{~min}^{-1}$.
(a) Show that, t minutes after the tap has been opened,

$$
\begin{equation*}
75 \frac{\mathrm{~d} h}{\mathrm{~d} t}=(4-5 h) \tag{5}
\end{equation*}
$$

When $t=0, h=0.2$
(b) Find the value of t when $h=0.5$

Jan 11 Q3. (a) Express $\frac{5}{(x-1)(3 x+2)}$ in partial fractions.
(b) Hence find $\int \frac{5}{(x-1)(3 x+2)} \mathrm{d} x$, where $x>1$.
(c) Find the particular solution of the differential equation

$$
(x-1)(3 x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=5 y, \quad x>1,
$$

for which $y=8$ at $x=2$. Give your answer in the form $y=\mathrm{f}(x)$.

June 11 Q3.

Figure 1
A hollow hemispherical bowl is shown in Figure 1. Water is flowing into the bowl.
When the depth of the water is $h \mathrm{~m}$, the volume $V \mathrm{~m}^{3}$ is given by

$$
V=\frac{1}{12} \pi h^{2}(3-4 h), \quad 0 \leq h \leq 0.25 .
$$

(a) Find, in terms of $\pi, \frac{\mathrm{d} V}{\mathrm{~d} h}$ when $h=0.1$.

Water flows into the bowl at a rate of $\frac{\pi}{800} \mathrm{~m}^{3} \mathrm{~s}^{-1}$.
(b) Find the rate of change of h, in $\mathrm{m} \mathrm{s}^{-1}$, when $h=0.1$.

June 11 Q8. (a) Find $\int(4 y+3)^{-\frac{1}{2}} \mathrm{~d} y$.
(b) Given that $y=1.5$ at $x=-2$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{ }(4 y+3)}{x^{2}},
$$

giving your answer in the form $y=\mathrm{f}(x)$.

Jan 12 Q8. (a) Express $\frac{1}{P(5-P)}$ in partial fractions.

A team of conservationists is studying the population of meerkats on a nature reserve. The population is modelled by the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{15} P(5-P), \quad t \geq 0
$$

where P, in thousands, is the population of meerkats and t is the time measured in years since the study began.

Given that when $t=0, P=1$,
(b) solve the differential equation, giving your answer in the form,

$$
P=\frac{a}{b+c \mathrm{e}^{-\frac{1}{3} t}}
$$

where a, b and c are integers.
(c) Hence show that the population cannot exceed 5000 .

