FPI - Chapter 2 - Numerical solutions of equations - Summary

- * If there is an interval say (a,b) in which f(x) changes sigh, then a voot of the equation f(x)=0 lies between a and b.
- * Interval bisection

eg. Use interval bisection to find the positive root of VII to 1 decimal place. We need to find x such that x=VII => $x^2=11$ => $x^2-11=0$

Hence, consider $f(x) = x^2 - 11$

0.	f (a)	ط	f(b)	<u>a+6</u> 2	$f\left(\frac{a+b}{2}\right)$
3	-2	4	5	3.5	1.25
3	-2	3.5	1.25	3.25	-0.4375
3.25	-0.4375	3.5	1.25	3.375	0.390625
3.25	-0.4375	3.375	0.390625	3.3125	-0.0273437
3.3125	-0.0273437	3.375	0.390625	3.34375	0.180664

Always draw up a table similar to the above. Once a vow is completed choose a or b such that there is a change of sigh with the midpoint. The chosen value and the midpoint will be your new a and b to start a new vow.

So, every new vow represents essentially a tighter interval over which a change of sights observed.

* Linear interpolation

For this method you draw a sketch of f(x) for a given interval and then use similar triangles to find the next approximation.

eg. $f(x) = x^3 + 4x - 9$ has a mot in the interval (1,2).

Use linear interpolation twice to find an approximation to this voot.

$$f(1) = -4 \qquad f(2) = 7$$

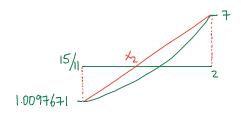
$$\frac{X_{1}-1}{4} = \frac{2-X_{1}}{7}$$

$$7X_{1}-7 = 8-4X_{1}$$

$$11 \times_{1} = 15$$

$$X_{1} = \frac{15}{11}$$

$$f\left(\frac{15}{11}\right) = -1.0097671...$$



$$\frac{X_{2} - 15/1}{1.0097671} = \frac{2 - X_{2}}{7}$$

$$7X_{2} - 7(15/11) = 2(1.0097671) - 1.0097671 \times_{2}$$

$$X_{2} = 1.4438607$$

* Newton-Raphson process

Use the formula $X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}$ to generate the next approximation.

Note that the Newton-Raphson process may not always give a better approximation and may take you further away from the voot.