FPI - Chapter 3 - Coordinate systems - Summary

* A Cartesian equation is one involving x and y only
* A cue may be described parametrically if x and y are expressed in terms of a third variable, usually θ or t. This third variable is known as the parameter
* Parabola
- Cartesian equation: $y^{2}=4 a x$ where a is a positive constant
- Parametric equations

$$
x=a t^{2} \quad y=2 a t
$$

where a is a positive constant

- Curve is symmetric about the x-axis

- The foes, s, has coordinates $(a, 0)$
- The directrix has equation $x=-a$
- The vertex is at the point $(0,0)$

A parabola is the locus of points where every point on the parabola is the same distance from the fours, s and the directrix
$\Rightarrow \sqrt{(x-a)^{2}+(y-0)^{2}}=x+a$
Distance from foes Distance from directrix

$$
\sqrt{x^{2}-2 a x+a^{2}+y^{2}}=x+a
$$

$$
x^{2}-2 a x+a^{2}+y^{2}=(x+a)^{2}
$$

$$
x^{2}-2 a x+x^{2}+y^{2}=x^{2}+2 a x+x^{2}
$$

$$
y^{2}=4 a x
$$

* Rectangular hyperbola
- Cartesian equation: $x y=c^{2}$, where c is a positive constant
- Parametric equations: $x=c t \quad y=\frac{c}{t}, t \neq 0$
- The curves has asymptotes $x=0$ and $y=0$.

