FPI - Chapter 3 - Coordinate systems - Summary

* A Cartesian equation is one involving x and y only

* A curve may be described parametrically if x and y are expressed in terms of a third variable, usually 0 or t. This third variable is known as the parameter.

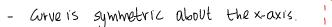
y

Directrix

Vertex

1X=- a

2=40x

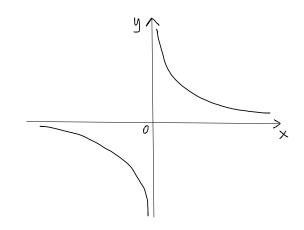

X

P(X,y)

a Fows

- * lavabola
- lartesian equation: y=4ax where a is a positive constant
- Pavametric equations

x= at² y= 2 at where a is a positive constant


- The directrix has equation X=-a
- The vertex is at the point (0,0).

A parabola is the locus of points where every point on the parabola is the same distance from the fows, S and the directrix

=>
$$\int (x-a)^2 + (y-o)^2 = x+a$$

Distance from focus Distance from directrix
 $\int x^2 - 2ax + a^2 + y^2 = x+a$
 $x^2 - 2ax + a^2 + y^2 = (x+a)^2$
 $x^2 - 2ax + a^2 + y^2 = x^2 + 2ax + a^2$
 $y^2 = 4ax$

Get in the right zone...

- * Rectangular hyperbola
 - Cartesian equation : $Xy = c^2$, where c is a positive constant
 - Parametric equations: x = ct $y = \frac{c}{t}$, $t \neq 0$
 - The curves has asymptotes x=0 and y=0.

