June 05 Q4. Use the substitution $x=\sin \theta$ to find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{1}{2}} \frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}} \mathrm{~d} x \tag{7}
\end{equation*}
$$

Jan 06 Q3. Using the substitution $u^{2}=2 x-1$, or otherwise, find the exact value of

$$
\begin{equation*}
\int_{1}^{5} \frac{3 x}{\sqrt{ }(2 x-1)} \mathrm{d} x \tag{8}
\end{equation*}
$$

Jan 07 Q8.

$$
I=\int_{0}^{5} \mathrm{e}^{\sqrt{ }(3 x+1)} \mathrm{d} x .
$$

(a) Given that $y=\mathrm{e}^{\vee(3 x+1)}$, copy and complete the table with the values of y corresponding to $x=2,3$ and 4 .

x	0	1	2	3	4	5
y	e^{1}	e^{2}				e^{4}

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the original integral I, giving your answer to 4 significant figures.
(c) Use the substitution $t=\sqrt{ }(3 x+1)$ to show that I may be expressed as $\int_{a}^{b} k t e^{t} \mathrm{~d} t$, giving the values of a, b and k.
(d) Use integration by parts to evaluate this integral, and hence find the value of I correct to 4 significant figures, showing all the steps in your working.

June 07 Q2. Use the substitution $u=2^{x}$ to find the exact value of

$$
\begin{equation*}
\int_{0}^{1} \frac{2^{x}}{\left(2^{x}+1\right)^{2}} \mathrm{~d} x \tag{6}
\end{equation*}
$$

Jan 10 Q8. (a) Using the substitution $x=2 \cos u$, or otherwise, find the exact value of

$$
\begin{equation*}
\int_{1}^{\sqrt{2}} \frac{1}{x^{2} \sqrt{ }\left(4-x^{2}\right)} d x \tag{7}
\end{equation*}
$$

Figure 3
Figure 3 shows a sketch of part of the curve with equation $y=\frac{4}{x\left(4-x^{2}\right)^{\frac{1}{4}}}, 0<x<2$.
The shaded region S, shown in Figure 3, is bounded by the curve, the x-axis and the lines with equations $x=1$ and $x=\sqrt{ }$. The shaded region S is rotated through 2π radians about the x-axis to form a solid of revolution.
(b) Using your answer to part (a), find the exact volume of the solid of revolution formed.

June 10 Q2. Using the substitution $u=\cos x+1$, or otherwise, show that

$$
\int_{0}^{\frac{\pi}{2}} \mathrm{e}^{\cos x+1} \sin x \mathrm{~d} x=\mathrm{e}(\mathrm{e}-1)
$$

Jan 11 Q7.

$$
I=\int_{2}^{5} \frac{1}{4+\sqrt{ }(x-1)} \mathrm{d} x
$$

(a) Given that $y=\frac{1}{4+\sqrt{ }(x-1)}$, copy and complete the table below with values of y corresponding to $x=3$ and $x=5$. Give your values to 4 decimal places.

x	2	3	4	5
y	0.2		0.1745	

(b) Use the trapezium rule, with all of the values of y in the completed table, to obtain an estimate of I, giving your answer to 3 decimal places.
(c) Using the substitution $x=(u-4)^{2}+1$, or otherwise, and integrating, find the exact value of I.

June 11 Q4.

Figure 2
Figure 2 shows a sketch of the curve with equation $y=x^{3} \ln \left(x^{2}+2\right), x \geq 0$.
The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis and the line $x=\sqrt{ } 2$.

The table below shows corresponding values of x and y for $y=x^{3} \ln \left(x^{2}+2\right)$.

x	0	$\frac{\sqrt{ } 2}{4}$	$\frac{\sqrt{ } 2}{2}$	$\frac{3 \sqrt{ } 2}{4}$	$\sqrt{ } 2$
y	0		0.3240		3.9210

(a) Complete the table above giving the missing values of y to 4 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places.
(c) Use the substitution $u=x^{2}+2$ to show that the area of R is

$$
\begin{equation*}
\frac{1}{2} \int_{2}^{4}(u-2) \ln u \mathrm{~d} u \tag{4}
\end{equation*}
$$

(d) Hence, or otherwise, find the exact area of R.

Jan 12 Q6.

Figure 3
Figure 3 shows a sketch of the curve with equation $y=\frac{2 \sin 2 x}{(1+\cos x)}, 0 \leq x \leq \frac{\pi}{2}$.
The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.
The table below shows corresponding values of x and y for $y=\frac{2 \sin 2 x}{(1+\cos x)}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$
y	0		1.17157	1.02280	0

(a) Complete the table above giving the missing value of y to 5 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places.
(c) Using the substitution $u=1+\cos x$, or otherwise, show that

$$
\int \frac{2 \sin 2 x}{(1+\cos x)} d x=4 \ln (1+\cos x)-4 \cos x+k
$$

where k is a constant.
(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.

