$$| (2-3x)^{5} = 2^{5} (1-\frac{3x}{2})^{5} = 32 \left\{ 1+5(-\frac{3x}{2}) + \frac{5}{2!} (-\frac{3x}{2})^{2} + \frac{3}{2!} ($$

$$9(x-2)=x^{2}$$
 $9x-18=x^{2}$
 $0=x^{2}-9x+18$
 $0=(x-3)(x-6)$
 $x=3 \text{ or } x=6$

3. $(x-\alpha)^{2}+(y-8)^{2}=r^{2}$ Circle cantre (α, b) radius r

a) $x^{2}+y^{2}-20x-16y+139=0$
 $(x-10)^{2}-100+(y-8)^{2}-64+139=0$
 $(x-10)^{2}+(y-8)^{2}=25$ $(10,8)$

b)
$$r^2 = 25 = 7r = 5$$
 AS REQUIRED

c) Substitute $x = 13$

$$(13 - 10)^2 + (y - 8)^2 = 25$$

$$(y - 8)^2 = 16$$

$$y - 8 = \pm 4$$

$$y = 4 + 8 = 12$$

$$g = y = -4 + 8 = 4$$
d) Perimeter = $r + r + length \ of \ avc$

$$= 5 + 5 + 5 + 1855$$

$$= 19.275$$

4. If x-a is a factor of
$$f(x)$$
 then $f(a)=0$

a) $f(-2) = 2(-2)^3 - 7(-2)^2 - 10(-2) + 24 = 0$

Ext2 is a factor of $f(x)$

b) $2x^3 - 7x^2 - 10x + 24 | x + 2$
 $-2x^3 + 4x^2$
 $2x^2 - 11x + 12$
 $-11x^2 - 10x + 24$
 $-11x^2 - 22x$
 $12x + 24$
 $-12x + 24$
 0
 $2x^3 - 7x^2 - 10x + 24 = (x+2)(2x^2 - 11x + 12) = (x+2)(2x-3)(x-4)$

8 a)
$$V = \pi r^{2}h$$
 b) $A = 2\pi x^{2} + 2\pi xh$

$$60 = \pi x^{2}h$$

$$h = \frac{60}{\pi x^{2}} = 2\pi x^{2} + 2\pi x \cdot \frac{60}{\pi x^{2}}$$

$$= 2\pi x^{2} + 120$$

$$= 2\pi x^{2} + 120$$

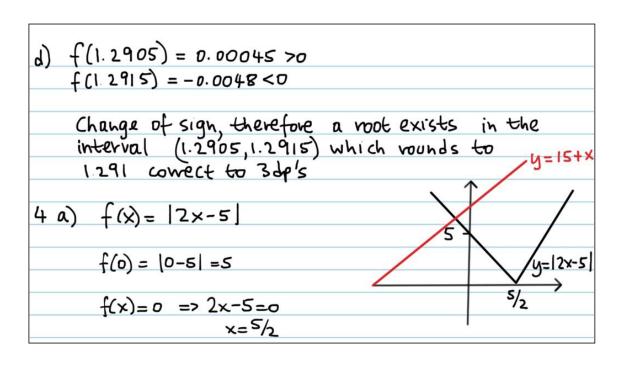
$$\times$$
c) $A = 2\pi x^{2} + 120 x^{-1}$

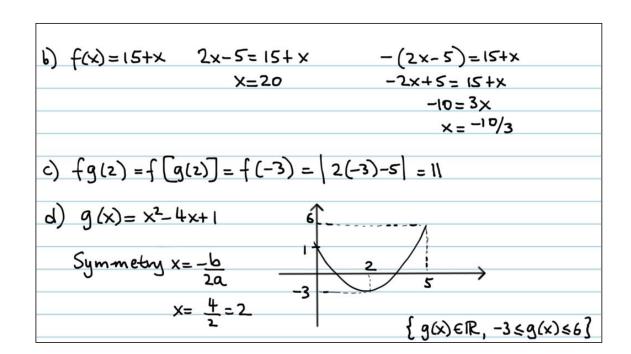
$$\frac{dA}{dx} = 4\pi x - 120 x^{-2} = 0$$

$$4\pi x = 120 = 7 x^{3} = 120 x = 3 120 = 2.12$$

d) When
$$x=\sqrt[3]{120}$$
 $A=85$ (to the nearest integer)

e) $\frac{d^2A}{dx^2} = 4\pi + 240x^{-3}$
 $\frac{d^2A}{dx^2}\Big|_{x=\sqrt[3]{120}} = 37.7 > 0$ Minimum


Necessary to get the point


C3 -	SUNE 2010	
1 a)	LHS = SIN20 1+cos20	= 25in0 cos0 = 5in0 = tan0=RHS 2650 650
6)	251h20 = 1 1+6s20	$\frac{\sin 2\theta}{1+\cos 2\theta} = \frac{1}{2}$
		tan0= 1/2
		x=26.565 8=180n+26.565
		0 = -153.4,26.6
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2
$$y = 3(5-3x)^{-2}$$

 $\frac{dy}{dx} = 3(-2)(-3)(5-3x)^{-3} = 18$
 $\frac{dy}{dx}|_{x=2} = \frac{18}{(5-3\cdot2)^3} = -18$ $\frac{dy}{dx}|_{x=2} = \frac{1}{(5-3\cdot2)^2}$
When $x=2$, $y=\frac{3}{(5-3\cdot2)^2} = 3$
 $y-y_1 = m(x-x_1)$ $y-3=\frac{1}{18}(x-2)$
 $18y-x-52=0$

3. a)
$$f(12) = 0.492 > 0$$
 Change of sign therefore $f(13) = -0.0487 < 0$ a root exists in the interval (1.2,1.3).

b) $4 \cos 2 \cos 4 + 1 = 0$
 $\frac{4}{5 \sin x} + 1 = 4 \times \frac{1}{5 \sin x} + \frac{1}{4} + \frac{1}{4} + \frac{1}{5 \sin x} + \frac{1}{4} + \frac{1}{5 \cos x} + \frac{1}{4} +$

