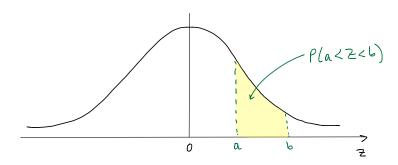
SI - Chapter 9 - Normal distribution - Summary



- * The normal distribution is an example of a continuous distribution
- * Robabilities are given by areas under the graph
- * P(Z=Z)=0 (the area under the corre at a specific point is 0).
- * The normal distribution is a bell-shaped curve which is symmetric about its mean (in the case of Z, the mean is zero).
- * The parameters of the hormal distribution are μ and σ .

 We write $X \sim N(\mu, \sigma^2)$ to indicate that a random variable is hormally distributed with mean μ and variance σ^2 (or standard deviation σ).
- 4 The standard hormal random variable is Z~N(0,1).
- * Standardisation of normal variables: if $X \sim N(M, \sigma^2)$ then $X \mu \sim N(0, 1)$.
- * To find probabilities you can use one of the two statistical tables provided.
 - D The big table gives you P(Z<Z) for positive values of Z.
 - 2) The small table gives you z such that P(z>z) = some "nice" small probability

- * You can manipulate probabilities to enable you to use one of the two tables, by always applying two of the changes below:
 - 1 Change inequality direction (> to < and vice-versa)
 - 1 Change sign of z-valve (+ to and vice-versa)
 - 3 Consider 1-probability

$$P(Z < 0.75) = 0.7734$$
inequality direction
$$z_{-value} \qquad probability$$

$$P(Z < 0.75) = 0.7734 \text{ is the same as} \qquad P(Z > 0.75) = 1-0.7734$$

$$P(Z < -0.75) = 1-0.7734$$

$$P(Z < -0.75) = 0.7734$$

* Do not confuse z-values and probabilities

- * P(a < X < b) = P(X < b) P(X < a)
- * Bear in mind that the symmetry of the normal distribution can be used to simplify things

eg. Find z such that P(-z < z < z) = 0.900.05

Hence, P(z > z) = 0.05 z = 1.6449

- * Remember that if the question is set in a way that allows you to use the small table then you should use that and not the big table.
- * In verbal problems always read the question carefully to understand it fully and always define your random variable (X =).