CHAPTER 1: BINOMIAL DISTRIBUTION

- * If $X \sim B(n,p)$ then $P(X=x) = {}^{n}C_{x} p^{x}(1-p)^{n-x}$ where n is the number of trials and p is the probability of success.
- * Conditions: 1) Fixed number of trials
 - 2 Constant probability of success
 - 3 Only two outcomes: success or failures
 - 4) Trials are independent
- * E(X) = np
- * Var(x) = np(1-p)
- * For $P(X \le x)$ you can use the tables provided p is at most o.s, and both n and p have values that appear in the table
- * Special cases: (1) \times B(10,0.12) Find P(XSI) P(XSI) = P(X=0) + P(X=1) (since 0.11 does not appear in the tables) = ${}^{10}C_0 \ 0.12^{\circ} \ 0.88^{10} + {}^{10}C_1 \ 0.12^{\circ} 0.88^{\circ}$ = 0.658
 - ② $X\sim B(15,0.70)$ Find $P(X \leq 3)$ Since probability of success is more than 0.5, consider instead the number of failures

X+Y=15 (since successes and failures add up to number of trials)

=>
$$P(X \le 3) = P(15 - y \le 3)$$

= $P(12 \le y)$
= $P(y \ge 12)$
= $1 - P(y \le 11) = 1 - 0.9999 = 0.0001$